Fire Growth and Spread on Thermoplastic Objects

BFRL has three related projects:

- Nano-Additive Flame Retardants for Polyurethane Foams
- Fire Growth and Spread on Thermoplastic Objects
- Modeling Melt Flow Using Particle Methods

Goals:

- A flammability test method useful in the NIST effort to develop less flammable polyurethane foams for residential applications (soft furnishings)
- A model of fire growth on generic configurations of thermoplastic materials also of use to the NIST effort

Approach:

Develop data in parallel on thermoplastics and on foams emphasizing the model first for thermoplastics and the test method first for foams.

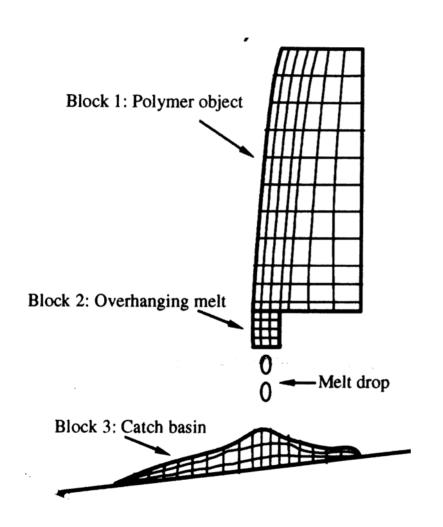
- medium scale fire growth experiments on simple thermoplastics and on polyurethane foams of varied configuration and composition
- smaller-scale experiments to study isolated aspects of the behavior of the materials

Generic Fire Growth Configurations

Stepwise Modeling Approach

- Two-Dimensional (Radiant Heat Flux)
 - Melting
 - Melting & Gasifying
 - Melting & Gasifying with Flow onto Pool

ATTACH FLAME


- Melting, Gasifying, Burning
- Melting, Gasifying, Burning with Pool Fire
- Three-Dimensional Fire Growth
 - Thermally-Thin Solid Thermoplastic
 - Vee Configuration Polyurethane Foam

Reaction Engineering International

 Commercial software codes gave very long solution times for the early stage problems

 REI was contracted to adapt their industrial furnace-modeling code to the NIST condensed phase problem

Reaction Engineering International

- Time-varying multiblock grid
- Finite volume discretization of Navier-Stokes eqns
- Free surface position from surface flow velocity
- Re-grid each time step

Reaction Engineering International

- Completed model results for 2-D melting & gasification of two polypropylenes of differing melt viscosity
- Comparisons with cone calorimeter-based experiments raise questions about model accuracy/input parameter accuracy
- Solution times in 10-20 hours range
- Now addressing melt flow on catch surface; solution times again comparable

Particle Finite Element Method

International Center for Numerical Methods in Engineering, Barcelona, Spain,

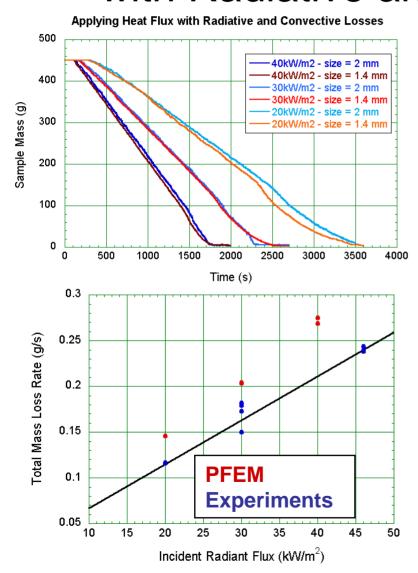
Basic PFEM algorithm:

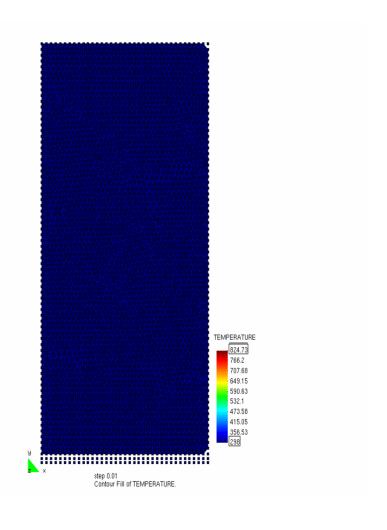
- 1) Particles with a given velocity, density, gravity, etc
- 2) Definition of a volume and a boundary.
- 3) Evaluation of the forces on the particles by solving the Navier-Stokes equations using the FEM.

This requires generating a mesh.

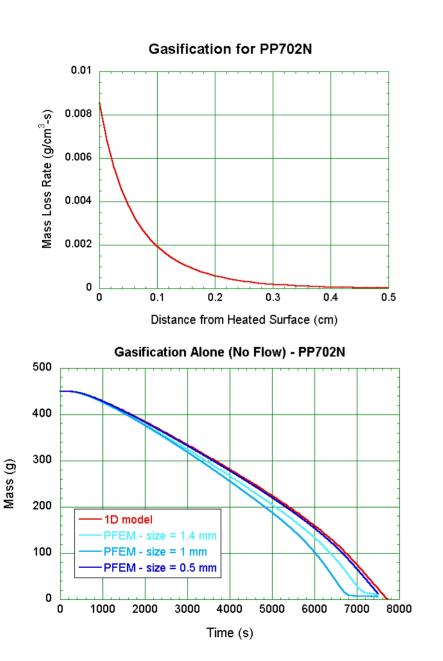
- 4) Evaluation of the velocity and acceleration of each particle
- 5) Move the particles and go to 1)

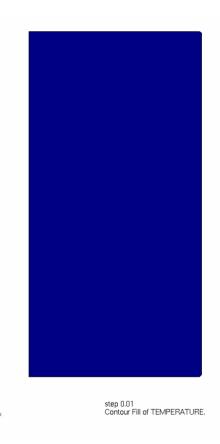
Initial "cloud" of nodes ⁿ C

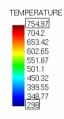

× × × ° ×


 $^{\mathsf{n}}\mathbf{x}$,

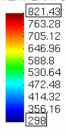
- Solid node
- Fluid node
- **X** Fixed boundary node




Steady Heat Flux with Radiative and Convective Losses



Gasification



Next Steps

- Experimental
 - Assessment of flammability test method at medium and full-scales
 - Description of polyurethane foam melt characteristics
- 2 model approaches
 - Choice of most promising model approach
 - 2-D and 3-D burning cases